# Evaluating the impact of the exposome on skin aging in 11 locations in Argentina by questionnaire and artificial intelligence diagnostic

Giselle Claros<sup>1</sup>, Mariana Lequio<sup>2</sup>, Santiago Cheli<sup>3</sup>, Agustin Bollea Garlatti<sup>4</sup>, Noelia Cecilia<sup>5</sup>, Lucrecia Juarez<sup>6</sup>, Mario Bittar<sup>7</sup>, María José Leiva<sup>8</sup>, Maria Laura Hernandez<sup>9</sup>, Juan Manuel Marquez<sup>10</sup>, Guillermo Badaracco<sup>11</sup>

<sup>1</sup>Centro de Dermatología Integral Dra Giselle Claros, Buenos Aires, Argentina; <sup>2</sup>Dermatología Patagonia, Río Negro, Argentina; <sup>3</sup>Instituto Dermatológico Belgrano, Jujuy, Argentina; <sup>4</sup>Bollea Garlatti Dermatologia y Estética, Tucumán, Argentina; <sup>5</sup>Nítida Centro Dermatólogico, Tucumán, Argentina; <sup>6</sup>Private Practice, Buenos Aires, Argentina; <sup>7</sup>Clincderm, Mendoza capital, Argentina; <sup>8</sup>Chajari Dermatological Institute, Entre Ríos, Argentina; <sup>9</sup>Consultorios Del Mar Salud, Tierra del Fuego, Argentina; <sup>10</sup>Clínica San Jorge Ushuaia, Tierra del Fuego, Argentina; <sup>11</sup>Consultorio Margulis Badaracco, Buenos Aires, Argentina

### Disclosure of Conflicts of Interest

- This work was supported by Laboratoires Vichy (L'Oreal).
- All authors received support from Laboratoires Vichy for conducting the study.

# Rationale and Objectives

- The exposome encompasses external and internal environmental exposures (including lifestyle factors) an individual is subjected to throughout their lifetime.<sup>1</sup>
- Exposome factors can accelerate skin aging.<sup>2</sup>

The objective of this cross-sectional study was to investigate associations between exposome factors and facial skin aging in participants from 11 locations in Argentina.

<sup>&</sup>lt;sup>1</sup>Wild, Complementing the genome with an "exposome": the outstanding challenge of environmental exposure measurement in molecular epidemiology, Cancer Epidemiol Biomarkers Prev 14(8) (2005) 1847-50.

<sup>&</sup>lt;sup>2</sup>Krutmann J, et al. The skin aging exposome. J Dermatol Sci. 2017;85(3):152-61.

# Study Design

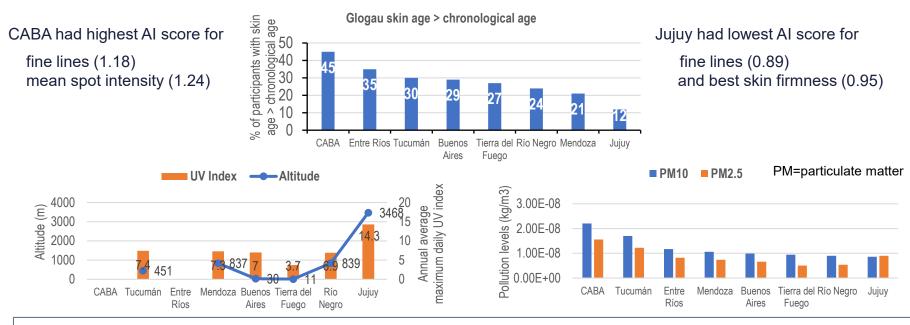
In this epidemiological, observational, cross-sectional study, participants from 11 Argentinian locations were recruited consecutively when attending a private dermatologist.

## Analyses

- An exposome questionnaire.
- Photographs were clinically assessed by the Glogau classification.<sup>3</sup>
- Artificial Intelligence (AI)-based analysis of 7 skin aging signs.<sup>4</sup>

## **Participants**

| Characteristic                           | n (%)            |
|------------------------------------------|------------------|
| Female gender, (N=1344)                  | 1100 (82%)       |
| Mean age [range], years, (N=1339)        | 42 [21-62] years |
| Fitzpatrick skin phototype III, (N=1333) | 691 (52%)        |
| Urban environment, (N=1326)              | 1247 (94%)       |
| Lives at altitude of<1600 m, (N=1294)    | 1234 (95%)       |


<sup>&</sup>lt;sup>3</sup>Glogau RG. Aesthetic and anatomic analysis of the aging skin. Semin Cutan Med Surg. 1996 Sep;15(3):134-8.

<sup>&</sup>lt;sup>4</sup>Jiang R, et al. A new procedure, free from human assessment that automatically grades some facial skin structural signs.

## Results

## 8 provinces in Argentina

Premature skin aging was highest for participants from Ciudad de Buenos Aires (CABA; most polluted) and lowest for Jujuy (least polluted, highest UV index) at 45% vs 12 %, p < 0.001, respectively.



Locations with higher pollution levels had more premature skin aging while locations at higher altitude and higher UV index did not have high premature aging.

## Overall population

- The Glogau skin age was higher than the chronological age for 28% of overall participants and 36% of men.
- Physical outdoor activity and exposure to agrochemicals increased the risk for premature skin aging.
- Drinking > 1.5L water/day, anti-aging procedures and use of dermocosmetics decreased the risk.

#### Logistic regression analysis factors associated with skin aging (predictive model), N = 1246

| Variable                       | Wald   | р      | Odds Ratio | 95% CI        |
|--------------------------------|--------|--------|------------|---------------|
| Age                            | 24.571 | <0.001 | 1.034      | 1.020 - 1.047 |
| Physical activity              | 4.657  | 0.031  | 1.383      | 1.030 - 1.856 |
| Exposure to agrochemicals      | 4.379  | 0.036  | 1.660      | 1.033 – 2.668 |
| Use of daily cleansing product | 12.439 | <0.001 | 0.618      | 0.473 - 0.807 |
| Anti-aging procedures          | 5.049  | 0.025  | 0.706      | 0.521 - 0.957 |

#### Conclusions

Several exposome factors increased the risk for premature skin aging (male gender, outdoor physical activity, exposure to agrochemicals, lower socioeconomic levels).

Other factors (high water intake, anti-aging procedures and dermocosmetics) decreased premature aging. The locations with the highest pollution levels had more premature skin aging.